MATH 314 Fall 2023 - Class Notes

11/7/2023

Scribe: Curtis Oliver

Factoring Trick:

If $a^2 \equiv b^2(modn)$ but $a \neq b(modn)$ then n is compose and gcd(n,a-b) = d is a nontrivial factor of n

Factoring:

Brute Force

— Worse Case: n = p * q and $p, q \approx \sqrt{n}$

—Try diving n by integers from 2 to \sqrt{n} until we find a divisor: $O(\sqrt{n})$

———"Size" of n is the number of bits $N = \lceil \log_2(n) \rceil$ so $O(2^{N/2})$

So we want to use the factoring trick

——Naive Approach: Pick random values of a, \sqrt{n} ; a ; n

------Check to see if $b = \sqrt{c}$ is an integer

If it is we use the factoring trick

 $---b^2 \equiv a^2 \pmod{n}$ so gcd(n,a-b) is a factor

————How long do we expect this to take?

Each time we compute c we get a random number between 0 and n-1

------Probability of success is $\sqrt{n}/n = 1/\sqrt{n}$

———On average this takes \sqrt{n} tries: $O(\sqrt{n})$

- - ------Need to get a list that has one more entry then there are primes up to B