MATH 314 Fall 2023 - Class Notes

11/7/2023
Scribe: Curtis Oliver
Factoring Trick:
If $a^{2} \equiv b^{2}(\bmod n)$ but $a \neq b(\bmod n)$ then n is compose and $\operatorname{gcd}(\mathrm{n}, \mathrm{a}-\mathrm{b})=\mathrm{d}$ is a nontrivial factor of n

Factoring:

Brute Force

——Worse Case: $n=p * q$ and $p, q \approx \sqrt{n}$
——Try diving n by integers from 2 to \sqrt{n} until we find a divisor: $\mathrm{O}(\sqrt{n})$
—"Size" of n is the number of bits $\mathrm{N}=\left\lceil\log _{2}(n)\right\rceil$ so $\mathrm{O}\left(2^{N / 2}\right)$
So we want to use the factoring trick
——Naive Approach: Pick random values of a, $\sqrt{n} ; \mathrm{a}\rceil \mathrm{n}$
Compute: $\mathrm{c}=a^{2} \% \mathrm{n}$
Check to see if $\mathrm{b}=\sqrt{c}$ is an integer
—_If it is we use the factoring trick
$b^{2} \equiv a^{2}(\bmod \mathrm{n})$ so $\operatorname{gcd}(\mathrm{n}, \mathrm{a}-\mathrm{b})$ is a factor
——How long do we expect this to take?
_—_Each time we compute c we get a random number between 0 and n-1
ـ $\quad \mathrm{n}$ choices for c, \sqrt{n} choices of them are perfect squares
——Probability of success is $\sqrt{n} / n=1 / \sqrt{n}$
——n average this takes \sqrt{n} tries: $\mathrm{O}(\sqrt{n})$
-Dixon's Factorization Algorithm
——Pick a bound B , we only want to consider primes smaller than B
——Pick random values of a, compute $\mathrm{c}=a^{2} \% \mathrm{n}$
__ If all prime factors of c are smaller than B we add it to our list (Divide c by all small primes up to B)
——Keep a list of a's and corresponding c's
——Need to get a list that has one more entry then there are primes up to B
-Now we find a subset of c's that make a square
——Let X be the product of all the a's we used while making the square and Y be the product of all the c's used to make the square and $W^{2}=\mathrm{Y}$
\longrightarrow Now $W^{2} \equiv X^{2}(\bmod n)$ so we can use the factoring trick to factor n

