Cryptography notes

James Edwards

11/28/2023

Hash Functions, not on final

-take in very large inputs to produce smaller outputs

- whenever 2 inputs produce digests, its called collision properties

1. Hard to reverse hash digest
2. Weak collision, find message that hashes to predetermine digest
3. Strong collision resistance, you create 2 messages to collide

Hash messages signature and send along side it

Elliptic Curves

Elliptic Curves are a variation to do instead of discrete log
They are the points of x and y that satisfy an equation in the form: $y^{2}=x^{3}+a x+b$
where a and b are ints and if you draw 2 points on an eliptic curve and draw a line between them, there will be a third point that intersects the curve and the line.

1 DSA- digital Signature Algorithm

$\mathrm{q}=$ medium sized prime number (80 digits)
$\mathrm{p}=$ large prime number (200 digits)
p is chose so that $p-1=q l$, this means that $p-1$ must be a multiple of q

Example.

$\mathrm{q}=11, \mathrm{p}=67=(6 \times 11)+1$
More Info
$\mathrm{g}=$ primitive root $(\bmod \mathrm{p})$
$\alpha=g((p-1) / q)=g^{l}(\bmod p)$
$\mathrm{a}=$ private exponent, must be $0<a<p-1$
$\beta=\alpha^{a}(\bmod p)$
public key (p, q, α, β)
Signature Step (DSA)
Pick an ephemeral key $0<k<p-1$, and the $\operatorname{gcd}(\mathrm{k}, \mathrm{p}-1)=1$
$\mathrm{r}=\left(\alpha^{k}(\bmod p)(\bmod q)\right)$
$\mathrm{s}=(m+a r) k^{-1}(\bmod q)$
(r, s) is the signature for message m so $(\mathrm{m},(\mathrm{r}, \mathrm{s}))$ is sent

Verification Step

Bob receives this message ($\mathrm{m},(\mathrm{r}, \mathrm{s})$) and wants to check if it is valid Bob computes:
$U 1=s^{-1} m(\bmod q)$
$U 2=s^{-1} r(\bmod q)$
$\alpha^{U 1} \beta^{U 2}(\bmod p)(\bmod q)$
This is valid if it equals r
Note, $k=s^{-1}(m+a r)(\bmod q)$

