MATH 314 Fall 2023 - Class Notes

9/5/2023 11/2/2023
Scribe: Name Brian Righini
Summary: Miller Rabin primality test.

Miller-Rabin Primality Test

Take an odd integer $n>1$ to be tested for primality. Let $n-1=2^{s} \cdot d$ where s is the largest integer such that 2^{s} divides $n-1$, and d is an odd integer.

- Witness Generation: Choose a random integer a such that $2 \leq a \leq n-2$.
- Exponentiation: Compute $x=a^{d} \bmod n$.
- Primality Test:
- If $x \equiv 1 \bmod n$ or $x \equiv-1 \bmod n$, then n passes the test for this particular a.
- If x is neither 1 nor -1 after the exponentiation, proceed to the next steps.
- Repeated Squaring: For $r=1,2, \ldots, s-1$, compute $x=x^{2} \bmod n$.
- Final Test:
- If $x \equiv 1 \bmod n, n$ is likely composite.
- If $x \equiv-1 \bmod n, n$ passes the test for this particular a.
- If x never becomes congruent to $\pm 1 \bmod n$ in the repeated squaring process, n is likely composite.
- Repeat the Test: Repeat steps 2-6 with a different random a to decrease the probability of error.

- Conclusion:

- If n passes all tests for different random bases, then n is considered "probably prime" with a high level of confidence.
- If n fails the test for any a, then n is composite.

Miller-Rabin Primality Test Example

Example of the Miller-Rabin primality test to check if $n=35$ is likely to be a prime number using $a=3$.

- Witness Generation: Choose a random integer $a=3$ such that $2 \leq a \leq n-2$.
- Exponentiation: Compute $x=a^{d} \bmod n$.

For $d=17$:

$$
\begin{gathered}
x=3^{17} \quad \bmod 35 \\
x=129140163 \bmod 35 \\
x=13
\end{gathered}
$$

- Primality Test:

- If $x \equiv 1 \bmod n$ or $x \equiv-1 \bmod n$, then n passes the test for this particular a.
- If x is neither 1 nor -1 after the exponentiation, proceed to the next steps.
- Repeated Squaring: For $r=1,2, \ldots, s-1$, compute $x=x^{2} \bmod n$.

For $r=1$:

$$
\begin{gathered}
x=13^{2} \quad \bmod 35 \\
x=169 \bmod 35 \\
x=4
\end{gathered}
$$

- Final Test:

- If $x \equiv 1 \bmod n, n$ is likely composite.
- If $x \equiv-1 \bmod n, n$ passes the test for this particular a.
- If x never becomes congruent to $\pm 1 \bmod n$ in the repeated squaring process, n is likely composite.

- Conclusion:

- If n passes all tests for different random bases, then n is considered "probably prime" with a high level of confidence.
- If n fails the test for any a, then n is composite.

