El Gamal Crypto System

Kason Kershner

November 2023

1 Important Rules:

- It is really important that Bob picks a new ephemeral key b for every message. If Bob uses the same b value to encrypt another message m2:

Ciphertext:

$$
\begin{aligned}
& \mathrm{r} 1=\alpha^{2}(\bmod \mathrm{p}) \\
& \mathrm{t} 1=\mathrm{m} \cdot \mathrm{~B}^{b}(\bmod \mathrm{p})
\end{aligned}
$$

Then, the r value stays the same

$$
\begin{aligned}
& \mathrm{r} 2=\alpha^{2}(\bmod \mathrm{p}) \\
& \mathrm{t} 2=\mathrm{m} \cdot \mathrm{~B}^{b}(\bmod \mathrm{p})
\end{aligned}
$$

So $\mathrm{r} 1=\mathrm{r} 2$.

- If Eve does a known plaintext attack on m 2 , she can find $\mathrm{B}^{b}=\mathrm{t} 2 \cdot(\mathrm{~m} 2)^{-1}$ $(\bmod p)$
- She never has to solve the Discrete Log Problem.
- Notice that if Eve can make an educated guess as to what the plaintext is, She can't check to see if she was right because every ephemeral key produces a different value of t.

2 Contrast This With RSA:

- If Eve ever guesses m, she can check to see if she was right by computing m^{e} $(\bmod n)$ to see if she computes the ciphertext.
- To defend against this with RSA, it is important to pad your messages.
- Pad: append a random number to the end of the message.
- This should be used whenever possible in applied cryptography .

3 Attacking the Discrete Log Problem:

Brute Force:

p is the modulus, where p is roughly 2^{b}

- b is the number of bits in p

Goal: Solve $y=a^{x}(\bmod p)$ for x. (We know y, a, and $\left.b\right)$

Try all possibilities for x where $1<\mathrm{x}<\mathrm{p}-1$

- This has a running time of $\mathrm{O}(\mathrm{p})=\mathrm{O}\left(2^{2}\right)$. This is exponential time...

Baby-step Giant-step:

Goal: Solve $y=a^{x}(\bmod p)$ for x. (We know y, a, and $\left.b\right)$

Let $\mathrm{N}=\operatorname{Ceiling}(\sqrt{p})$

Think about x as a number written in base N

- Note that $\mathrm{N}^{2}=\operatorname{Ceiling}(\sqrt{p})^{2}>\mathrm{p}>\mathrm{x}$

So $\mathrm{x}=\mathrm{i} \cdot \mathrm{N}+\mathrm{j}$

- i and jare digits in base N and between 0 and N

Goal: Solve for i and j :

$$
\begin{aligned}
& \mathrm{y}=\mathrm{a}^{i \cdot N+j}(\bmod \mathrm{p}) \\
& \mathrm{y}=\mathrm{a}^{i \cdot N} \cdot \mathrm{a}^{j}(\bmod \mathrm{p})
\end{aligned}
$$

$$
\mathrm{y} \cdot \mathrm{a}^{-i N}=\mathrm{a}^{j}
$$

- This is the same trick as meet in the middle.

Create tables then find the entry that shows up in both tables. There will only be 1 value in both tables.

Table1:
Baby steps:
All possibilities for $\mathrm{a}^{j}(\bmod \mathrm{p}) 0<=\mathrm{j}<=\mathrm{N}$

Table 2:
Giant steps:
$\mathrm{y} \cdot{ }^{-i N}(\bmod \mathrm{p})=\mathrm{y} \cdot\left(\mathrm{a}^{-1}\right)^{n}(\bmod \mathrm{p})$

Running time is $\mathrm{O}(3 \mathrm{~N})=\mathrm{O}(\mathrm{N})=\mathrm{O}(\sqrt{p})=\mathrm{O}\left(2^{b / 2}\right)$

Example:

Find x where $7^{x}=11(\bmod 23)$ using baby-step giant-step

$$
\mathrm{N}=\sqrt{23}=5
$$

Baby steps:
$7^{i}(\bmod 23)$.
$0<=1<5$

$$
\begin{aligned}
& 7^{0}=1(\bmod 23) \\
& 7^{1}=7(\bmod 23) \\
& 7^{2}=49=3(\bmod 23) \\
& 7^{3}=21(\bmod 23) \\
& 7^{4}=-2 \cdot 7=-14=9(\bmod 23) \\
& \text { table: } \\
& 0-1 \\
& 1-7 \\
& 2-3 \\
& 3-21 \\
& 4-9
\end{aligned}
$$

Giant steps:
$11 \cdot 7^{-j \cdot 5}=11 \cdot\left(7^{-5}\right)^{j}(\bmod \mathrm{p})$
$0<=\mathrm{j}<\mathrm{N}$
$7^{-5}=10(\bmod 23)$ by the extended Euclidean algorithm.

Table:

$$
\begin{aligned}
& 10^{2}=100=8(\bmod 23) \\
& 10^{4}=64=18(\bmod 23) \\
& 10^{5}=18 \cdot 10=-50=-4=19(\bmod 23)
\end{aligned}
$$

table:
$0-11(\bmod 23)$
$1-21(\bmod 23)$
$2-15(\bmod 23)$

21 is in both tables, so j is 1 and i is $3 . \mathrm{x}=3 \mathrm{~N}+1=15+1=16$.

