Notes 10/26/23

James Meegan

November 2, 2023

## Public Key Cryptography

Alice and Bob need to communicate without using a secret preshared key.

## Pass Protocol

3 pass protocol gives a way to do this securely. Sending everything 3 times is inefficient and it is vulnerable to a man in the middle attack.

## Man in the middle attack

Eve pretends to be Alice to Bob and pretends to be Bob to Alice and captures their message during the passing.

## Three-Pass Protocol in Cryptography

The three-pass protocol allows two parties, Alice and Bob, to exchange a message without either party having to reveal their secret keys to the other. This is done in three passes, hence the name.

1. Alice sends Bob a transformed version of her message.
2. Bob transforms the received message and sends it back to Alice.
3. Alice performs the final transformation and retrieves Bob's message.

## Tools for Modular Exponents with Composite Numbers

We need tools to work with exponents modulo composite numbers.

## Euler's Theorem

If $\operatorname{gcd}(a, m)=1$, then

$$
a^{\phi(m)} \equiv 1 \quad(\bmod m)
$$

where $\phi(m)$ counts how many residues $(\bmod m)$ have an inverse.
Example:

$$
3^{\phi(20)} \equiv 1 \quad(\bmod 20)
$$

Given:

$$
\begin{gathered}
a=3 \quad(\bmod 20) \\
\operatorname{gcd}(3,20)=1
\end{gathered}
$$

To find:

$$
\phi(20)
$$

We use:

$$
\begin{gathered}
\phi(20)=\phi(4) \cdot \phi(5) \\
\phi(4)=2(2-1)=2 \\
\phi(5)=5(5-1)=4
\end{gathered}
$$

Thus, $\phi(20)=2 \times 4=8$.
Let $p$ be prime:

$$
\begin{gathered}
\phi\left(p^{k}\right)=p^{k}\left(1-\frac{1}{p}\right) \\
\Rightarrow \phi(p)=p\left(1-\frac{1}{p}\right)=p(p-1)
\end{gathered}
$$

## Check using Repeated Squaring

$$
\begin{aligned}
& 3^{2} \equiv 9 \quad(\bmod 20) \\
& 3^{4}=\left(3^{2}\right)^{2} \equiv 81 \equiv 1 \quad(\bmod 20) \\
& 3^{8}=\left(3^{4}\right)^{2} \equiv 1 \quad(\bmod 20)
\end{aligned}
$$

Example for $6(\bmod 20)$
Note: Euler's theorem doesn't work in this case. Given:

$$
\begin{aligned}
a & =6 \\
m & =20 \\
\operatorname{gcd}(20,6) & =2 \neq 1
\end{aligned}
$$

Calculate:

$$
\begin{aligned}
& 6^{2} \equiv 36 \equiv 16 \quad(\bmod 20) \\
& 6^{4}=\left(6^{2}\right)^{2}=256 \equiv 16 \quad(\bmod 20) \\
& 6^{8}=16^{2} \equiv 256 \equiv 16 \quad(\bmod 20)
\end{aligned}
$$

Example for $5^{37}(\bmod 21)$
Note: 21 is not prime.
Using Euler's theorem where $\operatorname{gcd}(5,21)=1$,

$$
\begin{aligned}
\phi(21) & =\phi(3) \times \phi(7) \\
& =(3-1)(7-1) \\
& =2 \times 6=12
\end{aligned}
$$

$$
\begin{aligned}
& 5^{36}=\left(5^{12}\right)^{3} \equiv 1 \quad(\bmod 21) \\
& 5^{37} \equiv 5^{36+1}=5^{36} \times 5^{1} \equiv 5 \quad(\bmod 21)
\end{aligned}
$$

## General Rule for Exponents modulo Composite $m$

If your equation is $(\bmod m)$,
all of the exponents modulo $\phi(m)$
You have to be careful if the base and modulus have any shared factors.

Example for $7^{13}(\bmod 10)$

$$
\begin{aligned}
\phi(10) & =\phi(2) \times \phi(5) \\
& =(2-1)(5-1) \\
& =4
\end{aligned}
$$

$$
\begin{aligned}
13 & \equiv 1 \quad(\bmod 4) \\
7^{13} & =7^{1} \equiv 7 \quad(\bmod 10) \\
7^{14} & =7^{2}=49 \equiv 9 \quad(\bmod 10) \\
14 & \equiv 2 \quad(\bmod 4)
\end{aligned}
$$

RSA
Rivest, Shamir, Adleman discovered RSA in the 1970s.

## Public Key Cryptosystem

Alice creates a public key that she can tell everyone.
Anyone can encrypt a message using this key.
Alice is the only one who can decrypt messages.
Alice picks two large secret prime numbers $p$ and $q$, for example, $10^{20}$.
She computes $n=p \times q$.
She picks an encryption exponent $e$ such that

$$
\operatorname{gcd}(e,(p-1)(q-1))=1
$$

In practice, $e \approx 65537$.
Alice's public key is $(n, e)$.
Anyone can send Alice a message $m$ using the encryption function

$$
E(x) \equiv x^{e} \quad(\bmod n)
$$

Alice wants to decrypt:

$$
D(y)=y^{d} \quad(\bmod n)
$$

We have:

$$
\begin{gathered}
M=D\left(M^{e}\right) \\
M=D\left(M^{e}\right) \equiv\left(M^{e}\right)^{d} \equiv M^{e d} \quad(\bmod n)
\end{gathered}
$$

So,

$$
d \equiv e^{-1} \quad(\bmod \phi(n))
$$

Alice can use $p$ and $q$ to find

$$
\begin{gathered}
\phi(n)=\phi(p) \times \phi(q) \\
\phi(n)=(p-1)(q-1)
\end{gathered}
$$

She computes:

$$
d=e^{-1} \quad(\bmod (p-1)(q-1))
$$

Where $d$ is Alice's secret private key. She can forget $p$ and $q$.

