General Principle of Exponents $(\bmod p)$

- If an equation is $\bmod p$ where p is prime.
- Then we can treat all of the exponents $\bmod (p-1)$.
- Application of Fermat's Little Theorem.

Using this to speed up computation

- Use this to speed up computation (make exponent smaller).
- Use this to solve expressions involving exponents.

Example

$$
\begin{aligned}
\text { Solve } x^{5} & \equiv 7 \quad(\bmod 23) \\
\text { In calculus } x^{5} & \equiv 5^{7} \quad(\bmod 23) \\
\text { 5th root of } x^{5} & \equiv \sqrt[5]{5^{7}} \\
x \cdot \sqrt[5]{7} & \equiv 7^{1 / 3}
\end{aligned}
$$

Imagine rasing both sides of the equation to an exponent e(TBD)

$$
\begin{aligned}
& \mathrm{x}^{5} \equiv 7 \cdot 5^{e}(\bmod 23) \\
& \left(x^{5}\right)^{e} \equiv 7^{e}(\bmod 23) \\
& x^{5 e} \equiv 7^{e}(\bmod 23) \\
& 5 e \equiv 1(\bmod 22)
\end{aligned}
$$

We want
$5 e \equiv 1(\bmod 22)$
$e \equiv 5^{-1}(\bmod 22)$
$e \equiv 9(\bmod 22)$

Euclid's Algorithm

$$
\begin{aligned}
22 & =5(4)+2 \\
5 & =2(2)+1 \\
1 & =5-2(2) \\
2 & =22-5(4) \\
1 & =5-2(22-5(4))
\end{aligned}
$$

Modular Arithmetic Calculations

$$
\begin{aligned}
& 7^{2} \equiv 49 \equiv 3 \quad(\bmod 23) \\
& 7^{4} \equiv\left(7^{2}\right)^{2} \equiv 3^{2} \equiv 9 \quad(\bmod 23) \\
& 7^{8} \equiv\left(7^{4}\right)^{2} \equiv 9^{2} \equiv 81 \equiv 12 \quad(\bmod 23)
\end{aligned}
$$

Encryption/Decryption Functions

We found that $F(x)=x^{5}(\bmod 23)$ and its inverse function $F^{-1}(x)=x^{a}$ (mod 23). These functions can be thought of as encryption and decryption functions, respectively.

$$
\begin{aligned}
& E(x) \equiv x^{5} \quad(\bmod 23) \\
& D(x) \equiv x^{9} \quad(\bmod 23)
\end{aligned}
$$

Discrete Logarithm Problem

Given:

$$
b^{x} \equiv y \quad(\bmod p)
$$

and you know b, y, p, solving for x is surprisingly hard.
However, in comparison:

$$
b x \equiv y \quad(\bmod p)
$$

Solving for x is straightforward:

$$
x \equiv b^{-1} y \quad(\bmod p)
$$

3-Pass Protocol

This is a method for Alice to send a message to Bob securely even when they have no shared secret key.

Physical World Version

1. Alice locks the box with her padlock and sends it to Bob.
2. Bob locks this again with his lock and sends it back to Alice.
3. Alice unlocks her padlock and sends the box to Bob.
4. Bob unlocks his lock and opens the box.

Math Version

- Alice and Bob pick a big prime p. (Example: $p \approx 10^{200}$)
- p isn't secret. Eve knows p.
- Alice and Bob both pick secret keys a, b where:

$$
\begin{aligned}
& 2 \leq a \leq p-1 \\
& 2 \leq b \leq p-1
\end{aligned}
$$

And:

$$
\begin{aligned}
& \operatorname{gcd}(a, p-1)=1 \\
& \operatorname{gcd}(b, p-1)=1
\end{aligned}
$$

Encryption Functions

$$
\begin{array}{llr}
E_{A}(x)=x^{a} & (\bmod p) & \text { (Alice's encryption function) } \\
E_{B}(x)=x^{b} & (\bmod p) & \text { (Bob's encryption function) }
\end{array}
$$

Inverse Calculations

$$
\begin{aligned}
a \cdot a^{-1} & \equiv 1 \\
b \cdot b^{-1} & (\bmod p-1) \\
\equiv 1 & (\bmod p-1)
\end{aligned}
$$

Alice finds

$$
a \equiv a^{-1} \quad(\bmod p-1)
$$

Bob finds:

$$
b \equiv b^{-1} \quad(\bmod p-1)
$$

Decryption Functions

$$
\begin{aligned}
& D_{A}(y) \equiv y^{a^{1}} \quad(\bmod p) \\
& D_{B}(y) \equiv y^{b^{1}} \quad(\bmod p)
\end{aligned}
$$

Message Encryption and Decryption Process

- Alice wants to send a plaintext message m encoded as a number, where $0 \leq m<p$.
- Alice encrypts the message:

$$
C_{1}=E_{A}(m) \equiv m^{a} \quad(\bmod p)
$$

Alice sends C_{1} to Bob.

- Bob encrypts again:

$$
C_{2}=E_{B}\left(C_{1}\right) \equiv C_{1}^{b} \quad(\bmod p)
$$

Bob sends C_{2} to Alice.

- Alice decrypts C_{2} :

$$
C_{3}=D_{A}\left(C_{2}\right) \equiv C_{2}^{a^{1}} \quad(\bmod p)
$$

She then sends C_{3} to Bob.

- Bob decrypts:

$$
\begin{aligned}
C_{4} & \equiv D_{B}\left(C_{3}\right) \equiv C_{3}^{b^{1}} \quad(\bmod p) \\
& \equiv\left(\left(m^{a}\right)^{b}\right)^{a^{1} b^{1}} \quad(\bmod p) \\
& \equiv m^{a b\left(a^{1} b^{-1}\right)} \quad(\bmod p) \\
& \equiv m^{a b} \quad(\bmod p) \quad \text { since } a b\left(a^{1} b^{1}\right) \equiv 1 \quad(\bmod p-1) \\
& \equiv m \quad(\bmod p)
\end{aligned}
$$

Which is the original message.

