General Principle of Exponents $(\mod p)$

- If an equation is $\mod p$ where p is prime.
- Then we can treat all of the exponents $\mod (p-1)$.
- Application of Fermat's Little Theorem.

Using this to speed up computation

- Use this to speed up computation (make exponent smaller).
- Use this to solve expressions involving exponents.

Example

Solve $x^5 \equiv 7 \pmod{23}$ In calculus $x^5 \equiv 5^7 \pmod{23}$ 5th root of $x^5 \equiv \sqrt[5]{57}$ $x \cdot \sqrt[5]{7} \equiv 7^{1/3}$

Imagine rasing both sides of the equation to an exponent e(TBD)

We want $5e \equiv 1 \pmod{22}$ $e \equiv 5^{-1} \pmod{22}$ $e \equiv 9 \pmod{22}$

Euclid's Algorithm

$$22 = 5(4) + 2$$

$$5 = 2(2) + 1$$

$$1 = 5 - 2(2)$$

$$2 = 22 - 5(4)$$

$$1 = 5 - 2(22 - 5(4))$$

Modular Arithmetic Calculations

$$7^{2} \equiv 49 \equiv 3 \pmod{23}$$

$$7^{4} \equiv (7^{2})^{2} \equiv 3^{2} \equiv 9 \pmod{23}$$

$$7^{8} \equiv (7^{4})^{2} \equiv 9^{2} \equiv 81 \equiv 12 \pmod{23}$$

Encryption/Decryption Functions

We found that $F(x) = x^5 \pmod{23}$ and its inverse function $F^{-1}(x) = x^a \pmod{23}$. These functions can be thought of as encryption and decryption functions, respectively.

$$E(x) \equiv x^5 \pmod{23}$$
$$D(x) \equiv x^9 \pmod{23}$$

Discrete Logarithm Problem

Given:

$$b^x \equiv y \pmod{p}$$

and you know b, y, p, solving for x is surprisingly hard. However, in comparison:

 $bx\equiv y \pmod{p}$

Solving for x is straightforward:

 $x \equiv b^{-1}y \pmod{p}$

3-Pass Protocol

This is a method for Alice to send a message to Bob securely even when they have no shared secret key.

Physical World Version

- 1. Alice locks the box with her padlock and sends it to Bob.
- 2. Bob locks this again with his lock and sends it back to Alice.
- 3. Alice unlocks her padlock and sends the box to Bob.
- 4. Bob unlocks his lock and opens the box.

Math Version

- Alice and Bob pick a big prime p. (Example: $p \approx 10^{200}$)
- p isn't secret. Eve knows p.
- Alice and Bob both pick secret keys a, b where:

$$2 \le a \le p - 1$$
$$2 \le b \le p - 1$$

And:

$$gcd(a, p-1) = 1$$
$$gcd(b, p-1) = 1$$

Encryption Functions

$E_A(x) = x^a$	\pmod{p}	(Alice's encryption function)
$E_B(x) = x^b$	\pmod{p}	(Bob's encryption function)

Inverse Calculations

$$a \cdot a^{-1} \equiv 1 \pmod{p-1}$$

 $b \cdot b^{-1} \equiv 1 \pmod{p-1}$

Alice finds:

 $a \equiv a^{-1} \pmod{p-1}$

Bob finds:

 $b \equiv b^{-1} \pmod{p-1}$

Decryption Functions

$$D_A(y) \equiv y^{a^1} \pmod{p}$$
$$D_B(y) \equiv y^{b^1} \pmod{p}$$

Message Encryption and Decryption Process

- Alice wants to send a plaintext message m encoded as a number, where $0 \leq m < p.$
- Alice encrypts the message:

$$C_1 = E_A(m) \equiv m^a \pmod{p}$$

Alice sends C_1 to Bob.

• Bob encrypts again:

$$C_2 = E_B(C_1) \equiv C_1^b \pmod{p}$$

Bob sends C_2 to Alice.

• Alice decrypts C_2 :

$$C_3 = D_A(C_2) \equiv C_2^{a^1} \pmod{p}$$

She then sends C_3 to Bob.

• Bob decrypts:

$$C_4 \equiv D_B(C_3) \equiv C_3^{b^1} \pmod{p}$$

$$\equiv ((m^a)^b)^{a^1b^1} \pmod{p}$$

$$\equiv m^{ab(a^1b^{-1})} \pmod{p}$$

$$\equiv m^{ab} \pmod{p} \quad \text{since } ab(a^1b^1) \equiv 1 \pmod{p-1}$$

$$\equiv m \pmod{p}$$

Which is the original message.