MATH 314 Fall 2023 - Class Notes

10/17/2023

Scribe: Ian Scanlon

Summary: This Class covers Euler Phi Function and Chinese Remainder Theorem as well as Modular Exponentiation.

<u>Notes:</u> Phi can be shown as ϕ or φ , $\varphi(n)$ count how many residues \pmod{n} have an inverse, equivalently it counts integers $0 \le a \le n$ where $\gcd(a, n) = 1$

- $\varphi(5) = 4$
- $\varphi(26) = 12$
- $\varphi(9) = 6$

Chinese Remainder Theorem:

<u>Notes:</u> If m and n have gcd(m, n) = 1 then for any residues $a \pmod{n}$ and $b \pmod{n}$, we can find exactly one residue $X \pmod{n}$ in both residue classes

<u>Ex1:</u> Find $X \equiv 3 \pmod{5}$, $X \equiv 9 \pmod{11}$ if $x \le 55$ is $\equiv 9 \pmod{11}$ then $X \equiv 9, 20, 31, 42, 53 (9 + 11 = 20, 20 + 11 = 31, 31 + 11 = 42, ...)$

x = 53 is the only solution to both equations (mod 55)

General Algorithm to find x: Use Euclids extended algorithm to find m' and n' such that $1 \equiv m'm + n'n$ then $x \equiv a \pmod{m}$ and $x \equiv b \pmod{n}$ the solution is $X \equiv bm'man'n \pmod{mn}$

Note the theorm is false if $gcd(m, n) \neq 1$

What does this mean for the φ function?

Suppose we're computing $\varphi(m-n)$ where gcd(m,n)=1, $x \pmod{mn}$ has an inverse if both $x \pmod{m}$ has an inverse and $x \pmod{n}$ has an inverse.

Chinese Remainder theorem says that each residue \pmod{m} can be combined what a residue \pmod{n} to get a unique residue \pmod{mn}

$$\varphi(mn) = \varphi(m)\varphi(n)$$
 only when $gcd(m, n) = 1$

Ex2: If p is prime then
$$\varphi(p) = p - 1$$

 $\varphi(10) = \varphi(5 * 2) = \varphi(5)\varphi(2)$
 $= \varphi(2-1)\varphi(5-1) = 1 * 4 = 4$

$$\varphi(9) = 6 \text{ not } (9-1)$$

Because the rule for prime powers is $\varphi(p^k) = p^k(1 - 1/p)$

$$\varphi(p^1) = p^1 - p^0 = p - 1$$

so, $\varphi(9) = \varphi(3^2) = 3^2 - 3^1 = 9 - 3 = 6$

Modular Exponentiation: by using repeated squaring we can compute (a^{2^i}) very fast.

Ex1: 5^{16}

we know that $5^2 \equiv 25 \pmod{26}$

Therefore $(5^2)^2 \equiv (25)^2 \pmod{26}$

$$5^4 \equiv (-1)^2 \equiv 1 \pmod{26}$$

 $(5^4)^2 = 1^2$

$$(5^4)^2 = 1^{\frac{2}{2}}$$

$$5^8 \equiv 1 \pmod{26}$$

So... a^{2^i} (mod m) can be computed by using only i multiplication.

$$2^{16} \pmod{13}$$

 $2^2 = 4 \pmod{13}$
 $2^4 \equiv 4^2 \equiv 16 \equiv 3 \pmod{13}$
 $2^8 \equiv (2^4)^2 \equiv 3^2 \equiv 9 \pmod{13}$
 $2^16 \equiv (2^8)^2 \equiv 9^2 \equiv 81 \pmod{13} \equiv 3 \pmod{13}$