MATH 314 Fall 2023 - Class Notes

10/17/2023
Scribe: Ian Scanlon
Summary: This Class covers Euler Phi Function and Chinese Remainder Theorem as well as Modular Exponentiation.

Notes: Phi can be shown as ϕ or $\varphi, \varphi(n)$ count how many residues $(\bmod n)$ have an inverse, equivalently it counts integers $0 \leq a \leq n$ where $\operatorname{gcd}(a, n)=1$

- $\varphi(5)=4$
- $\varphi(26)=12$
- $\varphi(9)=6$

Chinese Remainder Theorem:

Notes: If m and n have $g c d(m, n)=1$ then for any residues $a(\bmod n)$ and $b(\bmod n)$, we can find exactly one residue $X(\bmod n)$ in both residue classes

Ex1: Find $X \equiv 3(\bmod 5), X \equiv 9(\bmod 11)$ if $x \leq 55$ is $\equiv 9(\bmod 11)$ then $X \equiv$ $9,20,31,42,53(9+11=20,20+11=31,31+11=42, \ldots)$
$x=53$ is the only solution to both equations $(\bmod 55)$
General Algorithm to find x: Use Euclids extended algorithm to find m^{\prime} and n^{\prime} such that $1 \equiv m^{\prime} m+n^{\prime} n$ then $x \equiv a(\bmod m)$ and $x \equiv b(\bmod n)$ the solution is $X \equiv b m^{\prime} m a n^{\prime} n$ $(\bmod m n)$

Note the theorm is false if $\operatorname{gcd}(m, n) \neq 1$
What does this mean for the φ function?
Suppose we're computing $\varphi(m-n)$ where $g c d(m, n)=1, x(\bmod m n)$ has an inverse if both $x(\bmod m)$ has an inverse and $x(\bmod n)$ has an inverse.

Chinese Remainder theorem says that each residue $(\bmod m)$ can be combined what a residue $(\bmod n)$ to get a unique residue $(\bmod m n)$

$$
\varphi(m n)=\varphi(m) \varphi(n) \text { only when } \operatorname{gcd}(m, n)=1
$$

Ex2: If p is prime then $\varphi(p)=p-1$
$\varphi(10)=\varphi(5 * 2)=\varphi(5) \varphi(2)$
$=\varphi(2-1) \varphi(5-1)=1 * 4=4$
Ex3: $\varphi(70)=\varphi(7) * \varphi(10)=\varphi(7) \varphi(5) \varphi(2)$
$=\varphi(7-1) \varphi(5-1) \varphi(2-1)=6 * 4 * 1=24$
$\varphi(9)=6 \operatorname{not}(9-1)$
Because the rule for prime powers is $\varphi\left(p^{k}\right)=p^{k}(1-1 / p)$
$\varphi\left(p^{1}\right)=p^{1}-p^{0}=p-1$
so, $\varphi(9)=\varphi\left(3^{2}\right)=3^{2}-3^{1}=9-3=6$
Ex4: $\varphi(200)=\varphi(8) \varphi(25)=\varphi\left(2^{3} * 5^{2}\right)$
$=\varphi\left(2^{3}\right) \varphi\left(5^{2}\right)=\varphi\left(2^{3}-2^{2}\right) * \varphi\left(5^{2}-5^{1}\right)=(8-4) *(25-5)=4 * 20=80$
Modular Exponentiation: by using repeated squaring we can compute ($a^{2^{i}}$) very fast.

Ex1: 5^{16}

we know that $5^{2} \equiv 25(\bmod 26)$
Therefore $\left(5^{2}\right)^{2} \equiv(25)^{2}(\bmod 26)$
$5^{4} \equiv(-1)^{2} \equiv 1(\bmod 26)$
$\left(5^{4}\right)^{2}=1^{2}$
$5^{8} \equiv 1(\bmod 26)$
So... $a^{2^{i}}(\bmod m)$ can be computed by using only i multiplication.

```
    2 16}(\operatorname{mod}13
2}\mp@subsup{2}{}{2}=4(\operatorname{mod}13
24}\equiv\mp@subsup{4}{}{2}\equiv16\equiv3(\operatorname{mod}13
2}\equiv\equiv(\mp@subsup{2}{}{4}\mp@subsup{)}{}{2}\equiv\mp@subsup{3}{}{2}\equiv9(\operatorname{mod}13
2
```

